The Dimethylamidodiborane(1-) Anion

By P. C. Keller

(Department of Chemistry, University of Arizona, Tucson, Arizona 85721)

Summary $Me_2N(BH_3)_2^-$ and $B_2H_7^-$ exist in equilibrium with μ -Me₂NB₂H₅ and BH₄⁻ in monoglyme; NaMe₂N $(BH_3)_2$ is prepared by the reaction of NaH with μ -Me₂NB₂H₅.

In monoglyme solution $NaBH_4$ and μ -Me₂NB₂H₅ exchange hydrogen but not boron. The "B n.m.r. spectrum; of a monoglyme solution of NaBH₄ and μ -Me₂NB₂H₅ in 2:1 ratio shows a weak BH_4^- signal at +41.6 p.p.m., a signal characteristic of $B_2H_7^-$ at $+25\cdot3$ p.p.m., and a quartet centred at $+11\cdot 2 p.p.m.$ (see 0° portion of Figure). Addition of more μ -Me₂NB₂H₅ to this solution results in the appearance of a signal at +17.0 p.p.m., characteristic of μ -Me₂NB₂H₅. These observations imply the reaction shown by equation 1.

$$\mu\text{-Me}_{2}\text{NB}_{2}\text{H}_{5} + 2\text{BH}_{4}^{-} \rightleftharpoons \text{Me}_{2}\text{N}(\text{BH}_{3})_{2}^{-} + \text{B}_{2}\text{H}_{7}^{-} \qquad (1)$$

This equilibrium lies to the right below room temperature, and is shifted to the left by removing all volatile materials. Warming the solution also drives the equilibrium to the left owing to the insolubility of NaBH₄ in monoglyme at elevated temperatures.¹ The Figure shows the progressive change with increasing temperature of the ¹¹B n.m.r. spectrum of the solution; at 40° most of the NaBH₄ has been precipitated and a broad single peak at +17.0 p.p.m. characteristic of μ -Me₂NB₂H₅ has appeared;² at 60° only the μ -Me₂NB₂H₅ signal remains.

The $Me_2N(BH_3)_2^{-3,5}$ and related structurally to H_2P - $(BH_3)_2^{-3,4}$ and $HS(BH_3)_2^{-,5}$ and is the first example of a derivative of the unknown $H_2N(BH_3)_2^{-}$, the anion originally suggested for the diammoniate of diborane.6

Sodium dimethylamidodiborane is prepared directly by the room-temperature reaction of μ -Me₂NB₂H₅ with an excess of NaH in monoglyme (equation 2).

$$\mu - Me_2 NB_2 H_5 + NaH \rightarrow NaMe_2 N(BH_3)_2$$
(2)

Separation of unreacted NaH by filtration and concentration of the solution results only in a viscous oil. Treatment of the oil with anhydrous dioxan and subsequent vacuum evaporation of the solution gives colourless crystalline $NaMe_2N(BH_3)_2, 0.5C_4H_8O_2$ (I). The dioxan of crystallization can be recovered quantitatively by warming the solid to 70° under vacuum. The new compound (I) dissolves without reaction in glyme ethers, ethanol, and water; neutral aqueous solutions show only slight decomposition after two weeks at room temperature, although acidification

results in rapid hydrolysis. The "B n.m.r. spectrum of a monoglyme solution of (I) shows a well resolved quartet at $+11\cdot 2$ p.p.m. (J 91 Hz) in agreement with that shown in the Figure. The ¹H n.m.r. spectrum in D₂O shows a sharp CH₃ singlet at τ 7.72 and a 1:1:1:1 ¹¹BH₃ quartet at $\tau 8.50.$

FIGURE. Temperature variation of the ¹¹B n.m.r. spectrum of a monoglyme solution of NaBH4 and µ-Me2NB2H5 in 2:1 ratio.

In diglyme solution, (I) reacts with B_2H_6 according to equation 3.

$$Me_2N(BH_3)_2^- + B_2H_6 \rightarrow \mu - Me_2NB_2H_5 + B_2H_7^-$$
 (3)

The μ -Me₂NB₂H may be recovered in good yield by vacuum line fractionation.

I thank the National Science Foundation for support of this work.

(Received, October 13th, 1969; Com. 1556.)

 \dagger The ¹¹B n.m.r. spectra reported were obtained using a Varian HA-100 spectrometer equipped with a 32·1 MHz probe and standard, temperature accessories. The ¹¹B chemical shifts are relative to Et₂OBF₃.

¹ R. M. Adams and A. R. Seidle in "Boron, Metallo-Boron Compounds and Boranes," ed. R. M. Adams, Interscience, New York, 1964, p. 388.

- ² D. F. Gaines and R. Schaeffer, J. Amer. Chem. Soc., 1964, 86, 1505. ³ J. W. Gilje, K. W. Morse, and R. W. Parry, Inorg. Chem., 1967, 6, 1761.
- ⁴ N. R. Thompson, J. Chem. Soc., 1965, 6290. ⁵ P. C. Keller, Inorg. Chem., 1969, **8**, 1695.
- ⁶ H. I. Schlesinger and A. B. Burg, J. Amer. Chem. Soc., 1938, 60, 290.